Homotopy Actions by Topological Actions . Ii
نویسنده
چکیده
A homotopy action of a group G on a space X is a homomorphism from G to the group HAUT(X) of homotopy classes of homotopy equivalences of X. George Cooke developed an 'obstruction theory to determine if a homotopy action is equivalent up to homotopy to a topological action. The question studied in this paper is: Given a diagram of spaces with homotopy actions of G and maps between them that are equivariant up to homotopy, when can the diagram be replaced by a homotopy equivalent diagram of G-spaces and G-equivariant maps? We find that the obstruction theory of Cooke has a natural extension to this context.
منابع مشابه
On the topological centers of module actions
In this paper, we study the Arens regularity properties of module actions. We investigate some properties of topological centers of module actions ${Z}^ell_{B^{**}}(A^{**})$ and ${Z}^ell_{A^{**}}(B^{**})$ with some conclusions in group algebras.
متن کاملTopological Centers and Factorization of Certain Module Actions
Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule with the left and right module actions $pi_ell: Atimes Xrightarrow X$ and $pi_r: Xtimes Arightarrow X$, respectively. In this paper, we study the topological centers of the left module action $pi_{ell_n}: Atimes X^{(n)}rightarrow X^{(n)}$ and the right module action $pi_{r_n}:X^{(n)}times Arightarrow X^{(n)}$, which inherit from th...
متن کاملTopological centers of the n-th dual of module actions
We study the topological centers of $nth$ dual of Banach $mathcal{A}$-modules and we extend some propositions from Lau and "{U}lger into $n-th$ dual of Banach $mathcal{A}-modules$ where $ngeq 0$ is even number. Let $mathcal{B}$ be a Banach $mathcal{A}-bimodule$. By using some new conditions, we show that $ Z^ell_{mathcal{A}^{(n)}}(mathcal{B}^{(n)})=mathcal{B}^{(n)}$ and $ Z^ell_{mathcal{B}...
متن کامل